
8/13/23, 7:45 PM Conventions & principles (80-COPRI) - SDEVEN Software Development & Engineering Methodology

Page 1 of 3

Version: 7.0.6
Release date: 230715

Conventions & Principles (SDEVEN.80-COPRI)

Table of Content

Conventions & Principles (SDEVEN.80-COPRI)

Preliminaries

Files

Calendar dates

Datastores

"In code" names & identi�ers

Preliminaries

This section is about terminology and naming standards and conventions used in development process and code.

The company try to keep aligned to international practiced and most used terms & conventions and adopts
standard changes "on the �y" as soon as possible.

Is necessary that people that are working in software structures (departments) of company to keep aligned with
terms and conventions in order to have A COMMON LANGUAGE AND UNDERSTANDING ABOUT THINGS.

The idea is that when is needed to write things that will be used by someone else in the other process steps or in the
future after a while (ie, there are more that one people involved), it is important that shared things to be recognized
at destination as they was thought at origin by those team that produced them.

Files

�les whose names start with xxx (case is not important) are (and will be) considered marked for a future
deletion or discontinuing'

SDEVEN Software Development & Engineering Methodology

8/13/23, 7:45 PM Conventions & principles (80-COPRI) - SDEVEN Software Development & Engineering Methodology

Page 2 of 3

this method allows to "remember" to delete them latter but to still keep the information available a while to assure an
acceptable and as smooth change management (and to give time for a possible return to the previous situation)

also when view list of �les in alphabetically order, these �les appear grouped near the end (or beginning)

�les whose names start with _WIP or WIP (normally case doesn't matter but should be a sign to pay more
attention) are known (announced) as being in work and not in a stable state, so they should be treated more
carefully when need to use them

any other "traditional" conventions should be respected and treated in consequence; the most of them comes
from Linux systems, for example �les beginning with dot (.) are hidden (for normal users), backup �les have
extension .bck , �les with extension .tmp are temporary and subject to be deleted (by users or operating
system) without notice, and so on

the characters - (dash) and (space) will be avoided as much as possible in �le names (ie, in different
programs should be source of errors by confusing with arithmetic minus operator) and replaced with _
(underscore); if this is not possible, A WARNING must be stated inside the �le content or in a respetive
component README �le

Calendar dates

These should respect the convention as they will be written as YYYYMMDD or YYMMDD , because by doing so will
assure a right ordering "by date" in about all situations (just by using the operating system standard sorting
procedures and not requiring some special order methods); the year could be only from 2 characters if there is no
doubt regarding the year (the standard conventions stated by SQL ANSI are very clear and self explanatory)

Datastores

The preferred datastore for code is the repository.

On the other hand, there are cases when other type of stores are required. Generally these stores are required in
development process (stores for other processes are not subject if this methodology) and speci�c to project. They
can be permanent (as stores where kits resides or stores for sales materials) or temporary allocated for project.

In any cases the dev infrastructure admin should be contacted.

Normally these stores will be allocated from �le server pools, which means that will act as "simple shared drives"
(without any notice). If there are some other protocols required, such as access by http , https , rsync and so on,
these issues must be noti�ed.

Also you should always expect that for such stores there are some limitations such as maximum capacity allowed,
number of �les, lifetime of �les, �le foemats allowed, etc. If this could be issues or you concern about them, please
ASK and do not make other assumptions.

why don't delete them directly

8/13/23, 7:45 PM Conventions & principles (80-COPRI) - SDEVEN Software Development & Engineering Methodology

Page 3 of 3

"In code" names & identi�ers

These issues should follow the programming language standards (as PEP for Python) or best practices in case
there are no stated standards. A linter and / or code formatter should be used like Blake for Python , but better is
to ASK the team leader or project technical manager and NOT TO USE your own standards by supposing they are
good and should be used (if this is the case, please discuss this with technical stuff before putting it in practice).

Some of recommended practices in any cases are:

always mark protected or private attributes with underscore character in front of their names, regardless the
programming language used

always comment the code; as frequently as better; do not worry about readability or other concerns; somebody
will take care to ask for cleaning if seems to be too much "spam"

use UPPER CASE for identi�ers used or intended to use as constants

comment the functions or class methods with a large comment block and specify at least: a description of max
2 lines, the argument types and what are good for, the returns type and when is happening

Last update: August 13, 2023

